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ABSTRACT

! l Methods for studying the bifurcation behavior of tubular reactors have

' been developed. This involves the application of static and Hopf bifurcation
theory for PDE's and the very precise determination of steady state

profiles. Practical computational methods for carrying out this analysis are
discussed in some detail. For the special case of a first order, irreversible
reaction in a tubular reactor with axial dispersion, the bifurcation behavior
is classified and summarized in parameter space plots. In particular the
influence cf the Lewis and Peclet numbers is investigated. It is shown that
oscillations due to interaction of dispersion and reaction effects should not
exist in fixed bed reactors and moreover, should only occur in very short
"empty" tubular reactors. The parameter study not only brings together
previously published examples of multiple and periodic solutions but also
reveals a hitherto undiscovered wealth of bifurcation structures. Sixteen of
these structures, which come about by combinations of as many as four
bifurcations to multiple steady states and four bifurcations to periodic
solutions, are illustrated with numerical examples. Although the analysis is
based on the pseudohomogeneous axial dispersion model, it can readily be
applied to other reaction diffusion equations such as the general two phase
models for fixed bed reactors.
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SIGNIFICANCE AND EXPLANATION

Although the theory of static and Hopf bifurcation for nonlinear
distributed parameter systems has been essentially developed, computational
procedures easily used by applied mathematicians and engineers are required to
bring these results into practice. The object of the present study is to show
how the static and Hopf bifurcation behaviour for highly nonlinear processes
may be determined as a function of process parameters. Special numerical
methods are required to handle the very stiff steady state equations often
encountered. Then special methods are demonstrated for mapping the parameter
dependence of the bifurcation points. The direction and stability nature of
the oscillatory solutions arising at Hopf bifurcation points is not determined
here. However Poore and Heinemann [1980) describe an algorithm for this
calculation.

The computational procedures are illustrated by application to an
important problem found in chemical engineering: the dynamic behaviour of
tubular reactors. Regions in parameter space are determined showing where

szatic and Hopf bifurcations (both single and multiple) occur. The

engineering significance of the results for this example problem is discussed.
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THE BIFURCATION BEHAVIOR OF TUBULAK REACTORS

Klavs F. Jensenr and W. Harmon Ray

1. INTRODUCTION

Irn. fixed bed reactors the reactants flow in gaseous or
liquid form through a. vessel (generally cylindrical in shape)
packed with solid catalyst particles within which the reaction
takes place. 1In the absence of catalyst packing, the vessel
only serves to confine the reaction medium and it is then
known as the "empty" tubular reactor. Naturally, the complex
transport and reaction processes allow for different levels of
sophistication in the mathematical modelling necessary to design
and optimize fixed bed reactors [1-5). Since these reactors
moreover are used in a vast number of industrially important
reactions (1, Table 1], they have received considerable atten-
tion during the last two decades. In particular, the occurrence
of multiple steady states, t. avelling waves, and oscillatory
states in these reactors has been a focal point in many
theoretical and experimental investigations (cf. {5-12] for an
overview). These phenomena were predicted by theoretical
analyses before being consciously noted in experiments.

Table 1 gives a listing of experimental studies where
multiple steady states (M), so-called wandering profiles (W),
and oscillating behavior (0) were reported. Following
Schmitz [9] we have omitted studies where the reactor was
of the recirculating type which behaves more iike a
continuously stirreé tank reactor (CSTR) than a fixed bed
reactor. The publication dates of the entries in the. table
clearly demonstrate the recent growth in experimental evidence

for bifurcation phenomena in fixed bed reactors.
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Table 1

Experimental studies of steady state multiplicity and
instabilities in tubular reactors

Reference

Experimental System

Remarks

10.

11.

12.

13.

Volter, 1964 ([13])

Padberg and Wicke,
1967, 1968 [14)])

Wicke
1968

et
[15])

al.,

Root and Schmitz,
1969, 1970 [1le6]

Fieguth and Wicke
1971 {171 :

Luss and Medellin,
1972 (18]

Butakov and

Maksimov, 1973 [19]
Hlavacek and
Votruba, 1974 [20]

Renken et gl.,
1975 {21]
Stephens, 1975
[22}

.V
Hlavacek et al.,

1976 (23]

Votruba et
1976 [24)

al.,

Ampaya and Rinker,
1977 ({25}

Polymerization of ethylene in a
nonadiabatic tubular reactor

Oxidation of CO on Pt/A1203 in
an adiabatic fixed bed reactor

Oxidation of ethane on Pd/Al1,04
and oxidation of CO on Pt/Alzo
in adiabatic fixed bed reactors

Liquid phase reaction between
Na,;5,03 and H,0, in a tubular
reactor with recycle

Oxidation of CO on Pt/A1203in a
fixed bed reactor

Liquid phase reaction between
Na,s O3 and H,O0, in a tubular
reacgor with countercurrent

flow of cooling in an annulus

Liquid phase polymerization of
styrene in a nonadiabatic
tubular reactor

Oxidation of CO on Pd/A1203 and
CuO/A1203 in an adiabatic fixed
bed reactor

Hydrogenation of ethylene on
Pt/A1203 in a fixed bed reactor

Methanol synthesis in industrial
autothermal fixed bed reactors

Oxidation of CO on Cuo/A1203,
Pd/A1203 and Pt/hle3 in an
adiabatic fixed bed reactor

Oxidation of CO on Pt/Al,05 and
CuO/A12/03 in an adiabatic fixed
bed reactor

Water-gas shift reaction on

Fe304/Cr203 in an autothermal
fixed bed reactor
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Table 1 (Cont.)

Reference Experimental System Remarks
14. Hegedus et al., Oxidation of CO on Pt/A1203 M1
1977 [26) in an isothermal fixed bed
reactor
15. Schleppy and Shah, NO reduction with CO over M
1977 [27] fiberglass supported Ru in a
nonadiabatic fixed bed reactor
16. Butakov and Liquid phase decomposition of o]
Shkadinskii, dinitroxydiethylnitramine in
1978 [28] acetic anhydride in a tubular
reactor
17. Hlavalex and Oxidation of CO on CuO/Al303, M
Votruba, 1978 [l2]} Pd/A1203 and Pt/A1203 in an
adiabatic reactor
18. Oh et al., 1978 Oxidation of CO on Pt/Al,04 Ml
[29] in an isothermal fixed bed
reactor
19. 4i1kus et al., Oxidation of CO on Pt/Al;03 in M
1979 [30]} an adiabatic fixed bed reactor
20. oh et al., 1979 Oxidation of CO on Pt/Al,0; in ul
[31) an isothermal fixed bed reactor
21. sharma and Hugnes, Oxidation of CO on a CuO-catalyst M
1979b (32]) in an adiabatic fixed bed reactor
22. Hlavdlek =t al., Oxidation of CO on Pt/Al,0; in a M
o539 [33) deactivated fixed bed reactor
23. Kalthoff and Oxidation of ethane on Pd/Al;04 M
Vortmeyer, 1980 in a nonadiabatic fixed bed
(34} reactor
24. Paspek and Varma, Oxidation of ethylene on Pt/Al,0; M
1980 [35]) in a nonadiabatic fixed bed
reactor
25. Puszynski and Oxidation of CO on Pt/Al1,03 in M, W
Hlavaclek, 1980 a nonadiabatic fixed bed reactor
[36]
M : multiple steady states
0 : self-sustained oscilla‘ions
W : special investigation of “wandexing"-profile:
1) short catalyst bed approximately 8 catalyst layers

metisastns. e ol .




Because of the complex transport and reaction processes
in fixced bed reactors, multiple steady states are generated
by various kinctic and physicochemical mechanisms. The

observed multiplicity behavior in the liquid phase reactions

(entries 4 and 6) has been shown to follow the predictions
of a plug flow reactor in a recycle loop. Naturally, the
multiplicity ot states in the autothermal reactors (entries

10 and 13) can be attributed to the feedback of heat through

the preheating loop. In the studies by Hegedus, Oh and their
coworkers (entries 14, 18, and 20) the multiple profiles stem
from multiple steady states of the individual catalyst particles.

Because the bed contains relatively few particles, the

investigators are able to realize a number of stable profiles.
Paspek and Varma (entry 24) alco attribute the multiplicity
behavior to the individual catalyst particles and explain the
phenomenon in terms of interactions between the reaction and
intraphase transport processes.

In the cases corresponding to the remaining entries in
Table 1, dispersion effects seem to be part of the underlying
mechanism. Hlavégek, Votruba and their respective coworkers
(entries 8, 11, 12, 17, and 22) studied extensively the effects

of reaction conditions on the multiplicity btehavior in CO-

oxidation and found that the phenomenon disappeared beyond

. a critical length (corresponding to Pem ~ 180) where the

dispersion effects became insignificant. However, they also .
observed three stable profiles in their adiabatic reactor i
contrary to the theoretical prediction from the pseudo-
homogeneous dispersion model of a maximum of two stable

} profiles. On the other hand, Sharma and Hughes (entry 21)

~4-
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studying the same catalytic svstem could not realize more than
the predicted two stable profiles. These authors found that

a two phase axial dispersion model was required to accurately
model their experimental data, whereas Schleppy and Shah
(entry 15) showed for a different reaction system that the
pseudohomogeneous axial dispersion model sufficed to fit

the observed ignition and quench behavior. Kalthoff and
Vortmeyer (entry 23) also used a pseudohomogeneous model but
found it necessary to include the radial porosity and velocity
distributions in order to quantitatively model the observed
multiplicity behavior.

Wicke and his coworkers (entries 2 and 3) demonstrated the
existence of travelling wave fronts, so-called wandering profiles,
which moved slowly (linear velocity *10-3cm/sec) and with small
changes in shape through the reactor for changes in the gas
velocity. For high gas velocities, the front was blown out,
while for low velocities the front moved upstream to the reactor
inlet. An intermediate velocity stabilized the front in the
middle of the reactor. The travelling fronts are characterizead
by steep concentration and temperature gradients and most
likely represent transitions between multiple steady state
profiles. Transients reported by Sharma and Hughes (entry 21)
as well as by Puszynski and Hlavidek (entry 25) nicely
demonstrate the moving front structures which come about
during the transition between states.

Oscillatory states in tubular reactors are reported in
three experiments, entries 1, 9 and 16, but only in the last

case are the oscillations linked to a mathematical model,

-5
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namely the axial dispersion model. The lack of experimental
evidence of oscillatory profiles in fixed bed reactors may be
explained by the fact that the characteristic time for thermal
transport within the bed is so much larger than the one for
material transport, i.e. the Lewis number is so large that
oscillations are not expected even in shallow beds. This point
will be treated in more detail below.

The question of uniqueness of the solution to the fixed
bed reactor equations has been considered by numerous investi-
gators, notably Amundson, Hlavadek and their respective
coworkers. The axial dispersion model with a single first
order reaction has been a favorite target for mathematical
analyses and sufficient conditions for uniqueness have been
developed by applying fixed point methods, comparison theorems,
bifurcation theory, and Liapunov functionals. These contribu-
tions and others dealing with alternative models are reviewed
by Jensen [37), Ray [7], Schmitz [9], and Varma and Aris (1l1].
The sufficient conditions for uniqueness, in the general case
of a nonadiabatic reactor with une-qual Peclet numbers for heat
and mass dispersion, show (as intuitively expected) that the
solution will be unique for sufficiently high values of the
Peclet numbers, large heat transfer coefficients, or small
values of the Damkohler number. Extensive calculations by
Hlavadek and his coworkers [38-43] confirm this and show, in
addition, that increasing the adiabatic temperature rise or
the activation energy enlarges the region of multiplicity and
shifts it towards lower Damkohler numbers, while an increase
in the reaction order reduces the region of multiplicity.

Multiplicity higher than three is possible only in the non-
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adiabatic reactor, where five steady states have been
calculated {40,44,45). Recently, Kapila et 5&. [46]) have
shown by using activation energy asymptotics that as many as
seven steady states may exist in the limit of large activa-
tion enerxqgy.

Also the travelling reaction fronts have gcnerated much
theoretical interest. Vortmeyer et al. [47-49] consider the
reactor infinitely long which seems to be a reasonable assump-
tion because the concentration and temperature changes in the
front occur over very small distances compared to the reactor
length. Gilles [50), in addition, approximated the reaction
rate over the front zone by a Gaussian distribution. Rhee et al
[51,52] employed two-phase cell and continuum models and
developed explicit formulae for the velocity similar to that
for a shock layer in a nonreactive system. The above
approaches all showed good agreement with experimental data.

The stability of the steady state has been studied
numerically by linearization where the dominant eigenvalues
were determined from either a collocation or Galerkin approxi-
mation to the linearized equations [44,45,53,54]. Alternatively
sufficient conditions for stability have been derived through
the use of comparison theorems and Liapunov functionals [55-~6Z].

As expected from the physical situation and formally shown
by singular perxturbation theory [64,65}, the pseudohomogeneous
axial dispersion model reduces to the CSTR model as the Peclet
number becomes very small. Therefore, based on the dynamic
behavior of the CSTR [cf. 66,67] one expects oscillations to

exist in short reactors. The existence of such oscillations

in the "empty" tubular reactor has been determined computational

e
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by Hlavadek and Hofmann (39) and Varma and Amundson [45b]).

However, examples have not been calculated for fixed bed
reactors. A detailed parametric study has not yet been
performed for either type of reactor; thus, in this paper

we shall show how such a study can be made by using bifurca-
tion theory. We shall be especially concerned with the effect
of the Lewlis number, i.e. the ratio of physical transport
thermal time constant to physical transport material time
constant. This parameter, which is unity for the empty

tubular reactor and much greater than unity for fixed bed
reactors, has been shown to have a striking influence on

the dynamics of chemically reacting systems (cf. [67] and
references within). Therefore, the analysis will have practical
interest in revealing if limit cycles are at all possible even
in short fixcd bed reactors. Although the bifurcation analysis,
i.e. the study of multiple steady states and oscillatory
behavior, will be based on the pseudohomogeneous axial
dispersion model with first order Arrhenius kinetics, the
general approach readily applies to other reaction-diffusion
equations with complex rate expressions. The dispersicn model
is a particularly good example for illustrating the -“echniques
since the modelling equations form a relatively simple set of
nonlinear parabolic differential equations which are capable of
predicting multiple steady states and limit cycles. Moreover,
stiffness problems are often encountered in the numerical
solution to the steady state equations which means that one

has to devise versatile and efficient algorithms. Finally, the

previously published examples of multiple steady states [e.g.

38-41,45) make it possible to check the algorithms.




DELLIN . L UATIONS

In the case of an 1rreversible first order reaction, the

i equations of the pseudohomogenvous axial dispersion model are
'

! | two coupled nornlinear parabolic partial differential equations %

for the reactant concentration and the temperature (2,11].

The eguations are:

? dclzt ey | ezt |, 3clz'.t)
P It L az-2 z 32"
“kofl-e Yclz',th ) exp(~E,/RT (2", ¢")] (1)
AT(z',t") 312 (20, ") 3T (z,t")
c .+ (1- ¢ l———1—— =k - 9.0 v —————
icppf pf ( Ep)ps ps 3t L 32'2 f pfz dz

L] 4 ) , L} 1 ] L]
+ (1—zp)(—An)koc(z',t')epr—EA/RT(z',t B Ebrant U G y-T (27,07} ])

x
(2)

with initial conditions

clz'.o) = €infz") T(z',0) = Tinlz") (3)

Here we use Danckwerts' boundary conditions, even in the analysis

of the transients.

3c(z',t")

’DL 3z

vz[co(t') - c(0,t")] (4a)

dc(z',t")
a2 |, =0 (4p) .

3T(2',t") .
Loan |y T VePeSpelTolth) - Tl s

aT(=z',t")

dz ' ¢




In the above equations ¢ and T represent the concentration

and temporature. DL and kL are the longitudinal dispersion

coefficients, while v, is the gas velocity. Subscripts f, s,
and w denote the fluid phase, solid phase, and reactor wall
respectively. cp and d: are the bed porosity and diameter.

ko and EA represent the usual Arrhenius paramcters. Uw is
the overall heat transfer coefficient between the reactor and
cooling medium. The effect of radial heat dispersion may be
included in Uw by making a one-point collocation approximation

to the radial temperature profile [80].

The equations are made dimensionless by defining:

- - -7\
L2 % . = |itot Fa_ L TwToy Fa o Ea
1 ' 2 ! 2w ! -
CO TO R'I‘0 To RTO RTO
t'v ' sz
= - Z z = _2___ Pe = .
t = € [ ’ [ . 1 DL
P
(6)
v_%p C 2(1-e Ik e Y -4H
o = -2 fpf o TUTEpTR® 0 (HeMiegy
2 kL v . = p.C T ’
z £ pf' o
42U e p_C + (l1~-¢ ) C
8 = dwp o] s, Le = P f pt P Ps ps
\I
2 r £ pf pfcpfep
We then obtain the following set of equations:
ax .
— o (7
TS Lx+ £(x)
where € denotes the capacity matrix
-~
1 0
C = (8)
~ 0 Le
_1_0_

e sl ‘l




and denotes the linear differential operator:

L
~

pelt 0 1 0 o o
22 ?
L= = - - - (9)
~ -1] 3z z
0 Pe2 o 1 0 B8
The nonlinearity g(x) is:
I~
X,
Da(l-xl)exp m‘
2 (10)
f(x) =
*2
B Da(l-xl)exp ﬁ—’g/? + axzw

In this formulation the boundary conditions take the form:

.
32 Pel 1]
B x(0,t) = x(,t) = o (11a)
~ ' 2 - i
0 2z Pe2
.y
B
3 °
B,x(1,t) = . x(1,t) = o (11b)
0 Wz
In the special adiabatic case with Le = 1, the modelling
equations may be reduced to one equation. This is done by

multiplying the mass balance by B and subtracting it from

-11-
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the energy balance to give an equation whose only solution is

T

X, = Bx (12)

This relationship makes the reaction rate a function »f only

one variable.

The parameters each have specific physical meaning. The
. quantity B is a dimensionless adiabatic temperature rise and
Da represents the ratio of reactor space time to the
characteristic reaction time. Pel and Pe2 are the Peclet
A numbers for mass and heat transport and B is a dimensionless
heat transfer coefficient. As mentioned, Le 1is the ratio
! of the physical transport thermal time constant to the physical
transport material time constant {67).
Based on common exothermic reactinns, Hlavidek and Votruba
{5, Table 6.6] list values of B and Y in the range 5-30 where

the high values of B usually correspond to oxidation reactions.

For the "empty" tubular reactor Le = 1, while for a typical
fixed bed reactor Le ~ 500. When the reactor is empty,

Pe1 = Pez, while for the packed reactor, Pel ~ 2-3 times
Pe2 since the value of Pe2 derives from the width of the
reaction zone as well as the length of the reactor. This

implies that multiplicity is possible even in long reactors

(cf. (41}). The Damkohler number, Da, and the dimensionless

heat transfer coefficient, B, vary with the reactor space

time but are usually less than 0.5 and 5 respectively.

3. BIFURCATION ANALYSIS

Bifurcation, or branching of solutions, is closely related

i to the stability and thus to the eigenvalues of linearized system

-12- .




equations., As an example, consider the system of nonlinear

coupled ODEs

dx
€ ° f(fdj)

where x 1is a state vector and p represents a vector of

parameters. The system is locally stable if all eigenvalues

of the Jacobian have negative real parts.

The eigenvalues are

functions of thc system parameters and these may change such

that the system loses its stability. The exchange of stability
occurs as some eigenvalues cross the imaginary axis,

at this point that the bifurcation can take place.

and it is

Therefore,

bifurcation is often referred to as "the principle of exchange

of (linearized) stability" (cf. [68] for a detailed discussion

of this). There are two ways in which the eigenvalues can cross

the imaginary axis, namely:

(i) A simple eigenvalue passes through the origin. This

leads to bifurcation of stationary solutions and is

known as "static bifurcation" ([69].

(ii) A pair of simple complex conjugate eigenvalues cross

the imaginary axis. This leads to bifurcation of

periodic solutions and is known as

(cf. {70) for more details).

“Hopf-bifurcation™

Occasionally multiple eigenvalues cross the imaginary axis

together and this may produce complex interactions between the

two basic bifurcation pnenomena (cf. [(70,71] for examples).

Because partial differential equations

(PDEs) can be

regarded in some aspects as an infinite set of ODEs, one

intuitively expects, and can in fact show,

-13-
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limited conditions [71-75 and reterences within], that the

bifurcation theorems for ODEs can be extended to the "infinite
dimensional case"”. The review paper by Crandall [75] gives a
particularly readable account of the necessary concepts and
proofs. The conditions are all satisfied for the parabolic or
elliptic partial differential equations which arise in reaction-
diffusion problems.

We now linearize the equations around a spatially varying
steady state profile rather thanm a point as in the ODE case.

The linearized equations take the form:

ax A | _
Cor = Ly + 5% x(2) (13)
x(2)=x_(2)
B,x(0) = o (14)
B,x(1) = o (15)
where x = x-x_ and C, L, f, By, and B, are defined by

equations (8), (9), (10), and (1ll) respectively. The branching
to nontrivial solutions or periodic solutions is then governed
by the discrete spectrum, i.e. the eigenvalues, of the linear

operator:

=C L+ —= (16)

Anarlogously to the ODE case, one sees:




g

P

(1) Static bifurcation, when a simple eigenvalue in

the spectrum passes through the origin.

(i1i) Hopf-bifurcation, when a simple pair of complex
eigenvalnues in the spectrum passes the imaginary
axis.

In addition, there must be an exchange of stability at the
bifurcation point: e.g., in order to have Hopf-bifurcation,
the remaining eigenvalues must have negative real parts.

The first N eigenvalues of {A may be determined by using
projection techniques such as Galerkin's method orthogonal
collocation. In the limit of infinite terms, Loth methods

will represent Ex exactly [76,77]. Thus, this “late lumping"”
procedure retains all the information in the original partial
differential equations, contrary to the behavior of the "early
lumping" procedures such as Hlavigek‘s "lineari zation" [38]
which, for example, cannot predict the existence of more than
three steady states. For both the collocation and the

Galerkin method the finit~ dimensional Jacobian takes the form:

8 ' ' 1
Mgy K2y ! :
N D U D
t ]
Ka ! W™ ! ) )
B T R (= m = o= = -
' [ [ ]
1 | o' _ _ . _ __ N e e
R I R . (17}
' ' Marer ve ey
L e T I T b= = = = = - = -
' : : el
b e e o e e e e 2 e e e e = . m e e . - - -




where N

is the number of eigenfunctions in the Galerkin

method or the number of interiorxr collocation points in the
collocation method.

The quantities and Kij are 2 x 2 matrices defined

M.
1

below (except in the special adiabatic case with Le = 1,

where they are scalars). In the following we shall describe
our approach to this analysis using weighted residual methods

(i) Galerkin's method

We make the usual transformation which causes the problem

to become self adijoint [(62]:
- ;kexp{- k z} , k = 1,2

and choose the trial function expa:.sion:

Pe

2

-
*x

where the % (z)

i are the orthonormal eigenfunctions

corresponding to the self adjoint eigenvalue problem:

2
e TR
dzz kn " kn
dé Pe
kn
dz " 3‘ °kn(2=0)
z=0
Pxn - By za
dz 2 kn
z=1
hence
2 172, / /
e L i
S a2 ‘2/(‘kn’P0k‘(Ptk/4))} { \kncoq( \knz)i(Pek/2)sln(

{771.

(18)

(19)

(20)

(21la)

(21b)

Az

1
kn )y

(22)




where the eigenvalues, an, are the zeros of the

transcendental equation:

Pe v X
tanv ) = ___:kﬁkn__ (23)

kn 2
Akn —(Pek/Z)

By inserting the trial functions into the linearized equations
and making the resulting residuals orthogonal to the first N

eigenvalues, one obtains the following system of ODEs:

da(t)
ac Jf(t) (24)
where a = (311'321'a12'622""alN'aZN)T and J is defined by
(17) with
u n
Pe] 3
Mi = (25)
A Pe ]
1 23 2
0 - ===+ B
L Le Pez 4 _J
and
1 1
[ I I *) 2
o 3%, | "11713 g ™, exp[7{(Pe,-Pe; )19, ¢ dx
X=X x=x
- ~S ~ =8
K - {
1 1
Ly %2 explZ(Pe, -Pe.)) d 1 ¥ )
Le x plgite;=Pe, 4s11¢2_j z Le ) = ?2145256:
0 1 0 2
L §=§s - -8
(26)

Note that Eij = K
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(11) The Orthogonal Collocation Method

This method has been successfully applied to many chemical
reaction engincering problems similar to the present eigenvalue
problem (53,54,78-811. In this mecthod the first and second
spatial derivatives are approximated by a weighted sum of the

values of the dependent variable at the collocation points:

3xk N+l

= §7 A .x,. 5 i=0,1,...,N, N+l ; Xk = 1,2 {(27)
dz . i37k3
z, j=0
1
and

32xk N+l

5 =.§ Bij¥ky ¢ 1 = Oulo... N, NeLg ok o= 1,2 (28)

3z 2 §=0

The weight matrices depend on the trial functions which in our

P(c:z,B) (2

i ) with weight

case are the first N Jacobi polynomials
. a B8 . . .
function 2z (l-z) [g1,ct. 3]). Since there is no special
symmetry in the tubular reactor problem, we use (a,B) = (0,0)
in which case the polynomials are Legendre polynomials. In
fact, Georgakis et al- [54 ] compared the convergence rate of
r%e cigenvalue calculations for various choices of a and 8

and found that the fewest number of collocation points were

re;:ired for a = B8 = 0. The collocation points are then the

(0,0)(2

N ). By discretizing the equations and

zeros of P
eliminating the boundary conditions (as detailed in (54 ,81
ct. 4]), we obtain the following set of ordinary differential
2yuations:

dy . 29
ac = % (29
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where the eigenvalues, an, are the zeros of the

transcendental equation:

7
can/n e ook’ Tkn (23)

kn 2
an —(Pek/2)

By inserting the trial functions into the linearized equations
and making the resulting residuals orthogonal to the first N

eigenvalues, one obtains the following system of ODEs:

da(t)

g ™ Jale) (24)
where a = (all'aZL'alz'azz""aln’azn)T and J is defined by
(17) with

A Pe
At _A;] 0
Pe1
Mi - (25)
by Pe
1 28 "2
0 - =4 B]
i Le [Pe, = 4 ]
and
} afl '1 3f1 z
—— d — -
o |ttt of 5, | TPlaiPeyPe ) ]dy 4y ydx
x=x x=x
-~ -s ~ -8
Ky ™
1 1
e /%, pl3(Pe P10y 09592 o [ 5| 42182492
0 0 2
=% x=x
(26)
Note that Eij = Eji
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(ii) The Orthogonal Collocation Method

This method has been successfully applied to many chemical
reaction engineering problems similar to the present eigenvalue
problem [53,54,78-81]. In this method the first and second
spatial derivatives are approximated by a weighted sum of the

values of the dependent variable at the collocation points:

axk N+1
53 = .2 £33 F PTO0MLi.oN, NeL G ko= 1,2 (27)
; j=0
1
and
Bzxk Nil
= B,.x,. ; i=20,1,...,N, N+1; k = 1,2 (28)
2 ’ r ! ’ ’ ’ ’
3z j=0 13 K]
i

The weight matrices depend on the trial functions which in our

case are the first N Jacobi polynomials

B8

. Q :
function =z (l-2) [81l,ct. 3]. Since there is no special

P;a's)(z) with weight
symmetry in the tubular reactor problem, we use {(a,B8) = (0,0)
in which case the polynomials are Legendre polynomials. In
fact, Georgakis et al. (54 ] compared the convergence rate of
the eigenvalue calculations for various choices of a and B8

and found that the fewest number of collocation points were
required for o = B = 0. The collocation points are then the

zeros of PSO’O)(Z

). By discretizing the equations and
eliminating the boundary conditions (as detailed in {54 ,81

ct. 4]), we obtain the following set of ordinary differential

eguations:

-Jy (29)
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T X
) is the conversion

where Yy = P4

X117 %217 %12 %02 - ¥ 1N XoN

and dimensionless temperature at N interior collocation

points. J is defined by (17) with:

B -
4 %,
axl 3x2
(2 wx (2)
,.‘1 - (30)
Le ax) EE
x=x (z
L ~ -8 i) ?58(21)_1
and
[+ 7
B
114 - A*
Pe; 113 0
K13 = (31)
B*
0 1 244 A*
' Le | Pe, ~ “2i §,4 8
. - 3 R
}
Gij is Kronecker's delta and A. and g. are the differentiation

weight matrices corrected for the boundary conditions, (14} and

(15), i.e.,

xiij R )
'[(Aoo'Pek)AN+1,N+1'A0,N+1AN+1.01—1[(AN+1,N+1A03’A0,N+1AN+1,j)xio %
+ (Ao PedAger, 1A, 080571 1) (32) {
X = A,B k=1,2 i
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The evaluation of the derivatives, ;;l , usually requires

K zi
interpolation among the discrete points of the steady state
solution. The computational effort involved in the two
procedures, (i) and (ii), are then nearly equivalent in spite
of the integrals in (26) because the integrals can readily be
evaluated by quadrature. The choice of method therefore
strictly depends on their convergence properties. McGowin and
Perlmutter (53] showed in numerical examples that Galerkin's
method converged monotonically while the collocation procedure
converged in a dampened oscillatory manner, but they did not
compare the overall rate of convergence. Because of the
similarity between the eigenfunction expansion and the

perturbation solution to the special adiabatic case with

Le = 1 [64,65], one expects that the necessary number of
terms, N, will increase with the value of the Peclet number
starting from N = 1 at small Peclet numbers. This is further

discussed below.

4. CALCULATION OF THE STEADY STATE

The steady state equations for the reactor (cf. Equation (7))
form a nonlinear two point boundary value problem which is guite
stiff even for moderate values of Peclet numbers (Pe ~ 10).

This boundary value problem must be solved quickly and accurately
if one wishes to obtain the bifurcation curves with judicious use
of computing time. Therefore, we have given special consideration
to the calculation of the steady state profiles.

Because of the stiffness, finite differences would require
far too many mesh points and can thus be ruled out. Although

efficient routines exist for solving stiff initial value

—20-
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problems le.g. [82,43}), the shoeting methods of McGinnis [(84)
and Kub;cek and Hlavacek (¢%) are cumbersome sirnce they
respuvctively require the integration of 12 and 24 first order
equations. In addition, because of the marching nature of the
technique, the solution must he stored in arrays in order to

be used in the bifurcation analysis. On the other hand, in the
method of weighted residuals the solution is characterized

by a few trial functions. Moreover, as mentioned, the colloca-
tion approach has been proven to be very efficient in solving
this type of boundary value problem. There are several ways
this method may be applied and in the following paragraphs

we review the advantages and disadvantages of these. More
details on the computational procedures may be found elsewhere {37].

~

(i) Collocatior over the whole domain, 0

1A

z £ 1, with orthogcnal

polynomials. This method is simple and has the advantage that
the collocation points and weights need only be calculated once.
It has been used successfully in cases of moderate values of the
Peclet numbers (Pe < 10) [e.g. 54,79,80), but the procedure is
inadequate at high values of Damkohler and Peclet numbers where
the reaction is complete within a narrow zone close to the
reactor inlet as illustrated in Figure 1. In order to obtain

a good representation of the narrow reaction zone, a large

number of collocation points are needed, most of which are wasted
downstream from the reaction zone. Moreover, the large number

of points cause the interpolating polynomial to wiggle as shown

in Figure 1. Although the wiggles are slight, they significantly v
alter the bifurcation behavior. This is illustrated in Figure 2a,
which shows the calculated regions of multiplicity. Note that

the collocation technigue with N > 8 can accurately represent
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Behavior of the interpolating polynomial (a) compared

to the exact solution (b). Approximate soluvution
based on orthogonal collocation, M = 10. Reactor
parameters: B = 10.0, Da = 0.13, Pel =2 Pez = 15%.0,

B = 0.0, Y = 20.0.
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Figure 2 Static bifurcation curves based on steady state
solutions with orthogonal collocation (A) and spline
collocation (M = 10) (R); B = 10.0, B = 0.0, Y = 20.0.
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the branch corresponding to the lower steady state, but even
for N = 10, it cannot predict the stecp upper steady state
profilcs when Pe > 10.

(ii) Transformation of the independent variable followed by

collocation over the whole domain, In order to avoid using a

large number of collocation points when the profiles are steep,
a suitable transformation of the independent variable can be
made such that the reaction zone is stretched and the "dead-
zone" is compressed. This implieg that the majority of the
collocation points will be lor-ated in the region of rapid
changes. However, no general transformation will fit the
entire region transversed by the reaction front for changes

in the bifurcation parameters, e.g. Da. The transformation
must contain at least one adjustable parameter which has to

be fitted to an approximate profile by nonlinear least squares.
Our experience with this method indicates that the computations
become too lengthy to act as a basis for the bifurcation
analysis.

(iii) Orthogonal collocation with exponentials. Orthogonal

a, B.z
collocation with trial functions of the form: fi(z) = 2 1e .

have been shown to give excellent results in plug flow reactor
problems since the trial functions are solutions to the corres-
ponding linear problem [86]. Because the axial dispersion
model in the limit of large Peclet numbers approaches the plug
flow model, this approach should also be able to solve the
stiff cases. However, we did not find any significant improve-
ment over the standard procedure (i), presumably because of
difficulties in determining an cptimal choice for the

coefficients, o, and Bi. The optima’ rection of these

24~




coefficients remains an open problem [86]. The method has the
further disadvantage that re-evaluation of the collocation points
and the weight matrices is necessary after cach change in the
bifurcation parameter, which greatly increases computation

time.

(iv) Orthogonal Spline Collocation (also referred to as

orthogonal collocation of finite elements). This method has

been successfully applied in other problems with steep
gradients, notably the catalyst particle problem for large
values of the Thiele modulus (81, cf,7, 87,88). The increased
accuracy of this approach over the global approach (i) derives
from the concentration of the collocation points in the
regions where the gradients are steep. Since the number of
points are reduced in the remaining regions where the solutions
only change slightly, the total number of collocation points
may be less than required in the standard case (i). 1In
addition, by balancing the number of collocation points and
spline intervals, one can obtain a patched interpolating
polynomial of sufficiently low order that wiggles are avoided.
The location of the spline points is clearly critical to the
accuracy of the approach. Carey and Finlayson [B7] suggested
placing the elements such that the mean squared residual was
minimized. After a given calculation the residuals were
examined and new elements inserted where the residual had

been largest. Then the procedure was repeated until the desired
accuracy was reached. This approach is general but may give
large array sizes. Instead, one may fix the number of spline
points and let their location move with the reaction front as

the bifurcation paramcter changes. A simple way to accomplish

~25=




this is to monitor the gradients of the solution and place the
spline points accordingly. However, this approach requires a
priori knowledge of the shape of the profiles. A far more
general approach is to rearrange the spline points such that
the mean squared residual is minimized. This can be done by
duetermining the sensitivity of the solution to the location of
the spline point [37]). Because of the extra computations in
the optimization of the spline point, the choice between this
method and the one proposed by Carey and Finlayson depends on
the relative irportance of computer time and space requirements.
However, for cases where the rate expression can be expressed
as a function of a single reactant, the following simple
procedure is attractive.

(v) A Simple Orthogonal Spline Collocation Method. This method

only applies to problems where the reaction rate can ke expressed
in terms of one reactant, but because of its ability to give fast
and accurate solutions, it is worthwhile considering. Moreover,
many reactor studies involve such kinetics. The numerical
difficulties are circumvented here by obtaining a collocation
solution for the reaction zone and patching this together with
an analytical solution for the remaining part of the reactor,
the "dead-zone”. Thus this procedure retains the advantages of
the simple collocation procedures described in (i) above and in
addition provides for concentrating the collocation points in
the reaction zone,

If one assumes that the reaction is essentially complete
Leyond the spline point Zgr one may neglect the reaction

rat< term so that the steady state equations on the interval

z £zS51 become:

e e e e T S ——




A

x1 =1
and x, =B if g8 = 0
1 dx§ dx
—_— 2 - _ = (34b
B("z x_“) 0 4if B8>0 )

Pe dzz dz

with the boundar; condition

dx2

az = 0 (35)

z=1

and the continuity condition

2|z+ = *2s (36)

where x is specified once the solutions over the two zones

2s
are patched together. For coastant x2w, equation (34b) may be

solved analytically:

-Gz(l—z) -al(l—z)
x2—x2w ) ale - a,e (37)
X, -x o o 82(1-2zg) e 91{l-zg)
2s 2w
where
Pe
2 48

9,08, = — 1+ /1 + ;:; (38)

Wwith the variable change [ = z/zs, the steady state

equations governing the reaction zone take the form:

2 F} .
1 d ﬁ: ’% 2 - 3 ] =03
—— _——2—— - zs —_— zs[fk(xl'xz) 52‘(8 2 (39)
Pek dz
k’lrz
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- with boundary conditions:

4
.;_2‘_ - zs?ekxk ’

g=0

k-l‘z

and the continuity restrictions:

g=1 g=1

;‘ﬁ‘ s 0

.14
=1

; [ 0 for g0
dg
g=1 - - -
-uz(l zs) al(l zs)]
} alaz[e -e : 2
’s(xz -x2w) -uz(l-zs) -al(l—zs) or 8
L C’l ule - aze

Following the sizndard collocation technique and eliminating
the continuity and boundary conditions, one obtains the colloca-

tion equations:

M
2 - =
j;‘ll Lkijxkj + zs[fk(xliXZi)_62kex21]=0 i=1,...,M, k=1,2 (42)




where

Ledy shiy

By,
Pey

-1
* (g Perzd (hpy i, () A1, 000,141

10
(a0 wer (Mo, 3750 ~ (“ml,ml'bko)“oﬂ(é'a—k) - zghio)

B
1,M+1
: - —— -z A (42
+ g, dhost Ao0tPerzs) (BoAur, 30 ¢ Pe, zA w1} a)
with
|
20" P00 (43b)
a,, = b20 =0 for B8=0 (43c)
—uz(l—zs) qgl(l-zs)
uzulte - e )
220 ™ %220 " ¥2uZs —a, ) S T 850  (43d)
ae - o,e s

For a given set of parameters, B, Da, Pel, Pez, B, and Yy
these equations can be solved by Newton-Raphson's method and
the spline point can be adjusted such that X M+l = 1 and

’

wiggles are avoided.

:
‘ In order for the method to handle cases where the reaction

L

front is sharp and at the same time situated close to the
outlet of the reactor, one or two additional collocation

points may be needed. Such profiles, of which Figure 3 gives
an example, arise when the Peclet numbers and the heat transfer

} are large. The steady state collocation equations are then:
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Figure 3 Example of a steady state profile for which three
spline points (e) are necessary. B = 16.8, pa = 0.337,

Pe, = 320, Pe_, = 100, x = -9.6, B = 0.72, v = 16.9.
1 2 2w

-39~




at the left hand boundary:

M1+1

350 A1ySag " 4%5ay (44)

at the interior points of the L'th element:

21§ 2 - -
L [’—l - AzlAlij]Y-klj + Azl[fk(xlli’ lei) 62k8x211] 0 (45)

i=1,...,M ; ¢=1,...,L

at each division between the spline intervals:

041,17 Tke,mel (46a)
N Hl+1 “l+1+1
— I A . —— I A R (46b)
82, 4o 2,M+1, 3%y 821 gm0 2+1,19%%, 441, 3
t=1,...,L-1
at the right hand boundary:
- H k‘lvz
ka xk . ’ (47a)
4 z
L s
ML¢1
o} (47b)

: AL me1, %115
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[ 0 for 8=0
. ML*I
—— ] A XKoo=
AzL j=0 L,M+1,3 2L3
b
20
L] - 0
| = (x, x, ) for B4
z+
s
(47¢c)
where
z-z
= l—l . = - - =
Y7 Taz, AR TR TRy %R0 (38)

when the first of the additional spline points i3 placed
at the inflection point of the temperature ;rofile, very
accurate results are obtained because then the energy Lalance
is satisfied also at the spline point. The =econd point, which
is seldom needed, should be placed at a local minimum »f the
temperature profile, if such a minimum e€x1sts 1n the interval
0<z<l. Otherwise, accurate results ar~ oltained i€ 1t 15 jplaced
between the inlet and the inflection ;oint ~f the temperature
profile such that 1t halves the terppoeratuyre rise botws en those
locations.

In order to illustrate the ability of this spline colirrar:iorn
method to accurately predict very sharp prnfiles, we consider an

example previously itablished by Lubeck {87, Fiqure 1] where the

Peclet numboers are large (Fnl = 329, Pe, = 10L7) and conse taent 1y
the profiles are very steep as 1llustrated 1n Figure &, Yiaure
S shaws the hysteresis 1n the ex1*t cohveroelon and termperat are
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profiles found by spline collocation. (a) Upper .

steady state, (b) lower steady state. B = 16.8,

Da = 0.330, Pe, = 320, Pe_, = 100, x = 9.6,

2 2w

B = 0.72, Y = 16.9.




Lk <4

Figure S

O PMCION =M —~4CO

A MUCHADIOMOUIM~ —MC=CA

1.9 : -
b ' !
' 1
8.8~ ) !
1 ]
e 1 X
¥ '
9.6 — ] )
]
- 1
1
'
9.4~ !
|
7 |
'
8.2~ |
I
; '
]
0.9
500 .
3
500 — :
] i
] ]
469-j )
3 1
p 1
300 |
1
< 1
280 — \
100- r|x1rlﬁfw|—rlfl‘rr'l Lush 20 St S S LN B
230 Joe 3350 400 150 500 $59

FEED TEMPERATURE ‘¢

Ignition and extinction behavior of outlet conversion
and temperature for Lubeck's example [89] . Pe
Pe, = 100, 8 = 0.72, B = 8.7~105T;z, Da = 7.33.10%¢~7,

Yy = 1.22 1o"1~;’, Xy, = y(JIO-T)TE’, T, feed temperature
in °%.

—3g-

= 32¢C,
to~v

b bt i




as the feed temperature 1s changed. Luleck simulated ignition

when the feed temperature was 1hucreased from 459°C to 464°C “
and found extinction when the temperature was decreased from

355°C to 330°C. OQur results are in agreement with those values;

we find ignition and extinction when the feed temperature is

461.8°C and 339.2°C respectively.

The computations illustrated in Figures 3, 4, and 5 were
based on three spli~e intervals (besides the dead-zone) with
six collocation points in cach. The two additional spline
points were not really necessary in the calculation of the
profiles shown in Figure 4, but they were regquired for the

calculation of the intermediate and unstable profiles similar

to the one shown in Figure 3.

5. STATIC BIFURCATION

Three methods are available in calculating the static

bifurcation points. These are: (i) a direct approach entirely

based on the steady state collocation equations, (ii) a more
general extrapolation procedure based on finding zero eigen-
values of the Jacobian, Eguation (17), and (iii) a turning
point calculation based on the Newton-Euler Steady State
algorithm.

(i) The direct approach. Here the bifurcation points are

located by finding the parameter set for which the Jacobian of
the steady state collocation equations becomes singular. The

bifurcation point can only be approached from one side (in the .

case sketched in Figure 6 from the richt hand side on the upper

branch and from the left hand «:de on the lewer branch), other-

wise the Newton-Rarhson iteration fails to converase or




converges to a different solution. Thercefore, this method 1s

not recommended.

(ii) A general extravolation approach. The idea here 1s to

linearize around a steady state point, (Da , x S(z), x, (z)) away

1 2

*®
from the bifurcation point, Dab, and then use the condition
det (J) = 0 to successfully extrupolate to the bifurcation valuc
of the parameter Da (cf. Figure 6). This requires additional

computation in evaluating the necessary terms, N, in the

Jacobian Equation (17). Figure 7 shows for various values of

the Damkohler number used in the linearization, ba_, the value
of the predicted bifurcation point Dab as functions of the
number of terms, N, in the Galerkin expansion. Note that while
there is movement toward the correct value of Da, iterative
relinearization and prediction are required for convercence.
However, this is plagued with singular prooblems because

L 3
Dab > Dab (cf Fig. 6). Expanding the dimension to incl:dn arc-

length as Keller {[90] suggests would be helpful, but we four.
the following method to be even more efficient.

(iii) Turning point calculations. Because the static kifurca-

tion points in this problem and similar chemical reaction
engineering problems, e.g. the catalyst particle problem, are
turning points, one may use a very simple approach involving
suitable change of dependent variables such that the system
equations have a unique solution. This approach was taken by
Sgrensen et al. (91] who were able to trace out the solutions
to the catalyst particle problem in the region of multiple
sterdy states by using the value of the concentration at a

collocation point as a parameter rather than the Thiele modulus

itself. Here we also choose to fix a concentration and include




x,(2)

TURNING POINTS

3
e-w

Figure 6 Steady state value of x,(z) for varying Da. The curve

has two turning points, my and m, -
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the Damkohler number as a dependent variable. In the adiabatic
case it can be shown that the profiles cannot intersect {92],

so the parameter change renders a set of equations which have

a unigue solution. However, in the nonadiabatic case, both

the concentration and temperature profiles can intersect [45,
Figqure 11}. Extensive calculations [e.g. 40,44,45,93) indicate,
as is physically expected, that for constant B, Pe., Pe., B,

1 2

and Y at the exit of the reactor

# 0 (49)

dDa z=1

Therefore, we may choose the exit concentration as a parameter

so that the collocation equations become:

M+l 2
= =l,.. 50
151 Llijxij + zsfl(xli,xZi) 0 i=1, »M (50)
Ml
T x,, =0
101 her1,3%15 (51)
M 2
151 LZinZj + zs[fz(xli.xZi) - szi] =0 i=1,...,M (52)
where Da 1is a dependent variable. The boundary condition
at z = 0 1is now included so A. . and L,.,. take the form:
M+1l,3 lij
. (A, - Pe,z )t A (53a)
L TS B, VIR 00 " Fe1%s? Awi1,0t04
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~1
N i (AOO—Pele) A

0j

while L2ij

initial guess is available.

determined as follows.

B4
Pel s 10

is still defined by (43a).

This initial gquess can bhe

We differentiate the eguations

with respect to xl Mal to determine the sensitivity of
1 xlj’ ij' Da to a step in outlet conversion
M ax. . ' * I, . I 3x
L Ll" : + zi le 3x = + le 3x 4
J=1 P3G g 11 Pmer %20 Fmn
3f1 aDa
e BE I A ' 1=1,...,M
aDa axl,}ﬂ 11,041
M x
* 1 ¥
E B e
RALIE i SR
? L 3x2j‘ . zz[afz Bxli 352 -9 3x2i
P e S PR I SR P LSRTTEY
3t
2 aDa o
+ Dz 3% ¢} i=1l,...,4

1,41
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{53b)

This set of nonlinear algebraic equations can be solved

by the Newton~Raphson procedure, provided a sufficiently good

(54)

{55)

(561}

Tt 3



This system of linear equations can be solved for a step in

outlet conversion to yield the next initial gqguess for

*1.M41
Egns. (50-52).

For the first step, ore may begin from the known trivial

solution to the steady state equations:

Da = O:
xlj =0
ij =0 if B8=0
-az(l-zj) -al(l—zj)
a,® ~age
- — 7
xz:l Lo 1-Pe, 5 = ) — (57)
ule - aze

{1 =0,1,...,41

The system of equations (50-52) and (54-56) form a Newton-
Euler algorithm, where they respectively function as corrector
and predictor. Bec:iise the left hand of the Newton-Raphson
correction solution to Equations (50-52) is the same as the
left hand side of Equations (54-56), the inverse of the
Jacobian needed for the Euler prediction step is already
available (if for example the LU decomposition is used).

Thus the prediction step, equations (54-56), requires only

an inexpensive back substitution. The above formulae have been
based on the simple collocation method, but two additional
spline points can readily be included as was done above in
Equations (44-48). The Newton-Euler algorithm is '»sed througn-~

out the following bifurcation studies.
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In order to check this static bifurcation algorithm we
considered two previously published calculations. Using the
spline collocation procedure described above, we calculated
the bifurcation curves shown in Fig. 2b. These are in good
agreement with the results of Hlavé:ek and Hofmann [38b, Fig.
15] except for a very slight difference in the value of the
Peclet number at the trifurcation point (i.e. the confluence
of the bifurcation curves). We obtain Pe = 31.88 whereas b
Hlavdidek and Hofmann report a value of Pe = 31.05.

The second example is taken to be a case with five steady
states studied earlier [93, Table 2]. Our procedure gives
the same values for Da at bifurcation as the GPM~technique
of Kub;cek and Hlaviddek (93]. This example assumed Yy + =,
It is interesting to note that for the same parameters and
rather large, finite Y (y = 100), further

calculations show that only three steady states are possible

(in agreement with recent results of Kapila et al. [46]).

6. HOPF BIFURCATION

Two basic approaches exist for evaluating the Hopf bifurca-
tion points: (i) direct methods basri on actual computations of
the eigenvalues or (ii) indirect procedures based on the magnitudes
of the coefficients of the characteristic polynomial. In the
first method all the eigenvalues are calculated, preferably by a
QR algorithm, (cf. [94] for the original description and [81,

p. 421) for an efficient FORTRAN routine} and the most positive
real part of the complex eigenvalues is chosen as a residual.
This is then made as close to zero as is wanted by varying the

bifurcation parameter [95]. Clearly, the search is abandoned

~42




4-lI!!IlIlllll!IIlllI!IIl-.l-------.l’

if the real part of any of the other eigenvalues is positive.
(ii) In the indirect methods the Hopf bifurcation points are
determined by varying the parameters to satisfy necessary
conditions formulated in terms of the coefficients of the

characteristic polynomial:

B(A) = 2 2Nlg ANl g 2N-2 s 52

1 T2 an-2* “Sap-y

X+52N = 0 (58)

Here N is the nurber of terms in the collocation or Galerkin
approximation and the coefficients, Si’ are the gums of the
principal minors of the Jacobian Equation (17), [96, ct. 4].
Necessary conditions that the characteristic polynomial has

two purely imaginary roots:

A1,2 = 33 Y w>0 (59)

are:

- N N _ N-1 N-1

(=1 70T (-1) TS 0T e e a (m1) S, ks, = 0 (60)
and

N-1 N-1 N-2 . N-2
-1)" s - ceed (-
( 190 HED T su a5, Juts, = 0 (61

In order to have bifurcation we must further have an exchange
of stability. The stability test is conveniently made using

the Routh-Hurwitz criterion as well as the necessary condition

an-1
Si

For N =1 and N = 2 the necessary conditions for Hopf

that the coefficients (-1) must be positive.

bifurcation may be reduced to:

for N=1




for N=2

S S
3 3
- |:=— - S + S, =0 {63a)
s, s, 2 4
< (63b)
S1 o} g
53 < 0 (63c)
S4 > 0 (63d)

Recently, Kubfcek [97] presented two variants of the above
procedure where he combined the Hopf conditions and steady
state egquations and solved the entire system by Newton-
Raphson iteration. However, such a procedure is likely to
cause difficulties in the present tubular reactor problenm
because of the large search space combined with local
convergence of Newton's method. Instead we yse the Newton-
Euler steady state algorithm and search over Da for a solu-
tion to equations (60) and (61) in the parameter region
where the necessary condition, (-I)ZN-isi >0, is satisfied.
When a solution has been found, we use the Routh-Hurwitz

criterion to check the sign of the real part of the remaining

eigenvalues. This approach works well for N £ 2, whereas

for larger N the direct approach (i) gives faster and more
accurate results.

The direction and stability of the bifurcating orbits can
be determined; in principle,by applying the standard formulae for
ODEs [70,98) to the collocation or Galerkin approximations
(cf. Section 3) since these represent gx correctly in the

limit of large N. Alternatively one may use the new formula
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’ of Herrnemann and Foore ey, However, tho otany izt §

] periodic solutiuns 1w rpot pursued 1n detarl nere.
' At toe time these Hop: bhifurcatilion alorithms wrre

| developed, no calcvulations of Hopf bLafurcation jornts o
tubular rractor equat:ions had been carried cut to our knowledae.
T

Therefore, we had to be satisfied w.oth comparing the jararcter

values at bifurcation points with those used in sinmalaticns

of limit cvcles. For example, Hlavaddek and Hofmarn [3%]

found a stable limit cycle for the parameters B = 11.0,

Pe, = Pe_. = 1.0, Le = 1.0, x = 0.0, 8B = 2.C, Da = 0.200 and
1 2 2w

Y * ™. This compares well with our result that stable limit
cycles should exist at least between the two Hopf bifurcation
points, Da = 0.153 and Da = 0.238.

In addition, the forthcoming paper by Heinemann and Foore
[99]) offers an aposteriori check of our algorithms, since they
have calculated the Hopf bifurcation points corresponding to
the original simulations of Varma and Amundson [45b]. Applica-
tion of our algorithm gave the same results as obtained by
Heinemann and Poore [99] for these examples [37].

The convergence properties of the valerkin and ccllocation
procedures were studied in general by varying the number of terms
in the evaluation of the critical Lewis number, Lec. This number
represents the maximum value of the Lewis number that allows Horpf
bifurcation and thus gives a good measure of the convergence
properties of the above algorithms. The actual calculation of
Lec is detailed below. As also found by McGowin and Perlmutter
[53], we show that the Galerkin procedure converges monotonically

while th2 collocation method converges in a dampened oscillatory

-45~
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peripheral shetches in Figure 2. Uppal ¢t al. [66] also give
the direction and stabilaty of the bifurcvating orbits as well
as phase portraits of the jpousible dynavic behavior. However,
similar results for tile tulular reactor are not included here,
because classifying the stability of periodic so2lutions is

beyond the scojpe of the present soudy.

- -
e N e m s D

The B-8 parameter space ;lot, illustrated in Figure 17, ;
shows the var us regimes of rifurcat:on behavior for the axlal
dispersion m.del with Pel = Pez = 5. This diagram was
calculated using the Newton-fuler steady state algorithm with
2 spline points and 6-10 collocation polnts in each element. 1
The eigenvalue calculations were based on Galerkin's method
with the first 6 eigenfunctions.

In addition to the M, Sl' and 52 curves alsc found in
the CSTR case, there is a multiplicity curve, Mz and Hopf-
' "
bifurcation curves S3’ 53, and 54. The curve MZ represents

the appearance of a second sct of static bifurcation points
not found in the CSTR. Note that for large 8, these may
occur for lower values of B than the first set (which arise
above Ml). Thus the tubular reactor may more easily show
multiplicity than the CSTR for large amounts of cooling.

] "

The curves 53, S3 allow additional Hopf bifurcation

points to appear as B increases, while curve 54 marks the
simultaneous disappearance of two Hopf bifurcation points by
coalescence. These M and S «curves divide the parameter

space into 14 regions, I-XIV; the first 6 of which, i.e.,

I-VI, are the same as those found in the CSTR analysis (cf.

Figure 92) whereas the others are new. The bifurcation behavior




Figure 9

Classification of the dynamic bchavior of the
in the parameter space B-8 [66].
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expected in vach reaion 1s i1llustrated by the sketches of the
variation of the stvady state exit conversion, xl, with the
bifurcation parameter, Da. Specific numerical simulations

of changes 1n the stuady state exit conversion, x and

1’

temperature, X with Da are shown in Figure l2a-r and the

2"
corresponding values of B and B are summarized in Table 2 and
Figure 11. The vertical lines in Figures 12b,d,i and q
indicate the values of Da for which the steady state

profiles are shown in Figure 13. The bifurcation structure
is detailed in the following paragraphs.

The two multiplicity curves, M and M intersect at

1 2'
the point P, (B,B) = (12.4, 2.2) (cf. Figure 10). For parameter
combinations to the left of P, above Ml and below MZ' x1
versus Da has two turning points, ™, ml, i.e., three

steady state profiles exist for a range of Damkohler numbers
(cf. Figure 12b}). Figure 13(i) gives an example of such

multiple steady state profiles. If (B,B) moves above Ml and

Mz, a second set of static bifurcation points, m,s My. appear
in the X,» X, curves. In this case five steady states are

possible if the two sets of multiplicities overlap, i.e., Da(m4) <

Da(ml) (cf. Figure 12i); otherwise there are two regions of three

steady states as illustrated in Figure 12p. The broken curve

-

MZ represents the parameter combinations, (B,B) for which

Da(ml) = Da(m4) and thus separates the regions where the two

*
phenomena occur. M2 is not a bifurcation boundary but it is
interesting to note that romes very close to the point 0

where the M2, Sl' SZ' anu curves intersect (cf., Figure

101}.

To the right of the intersection of Ml and M (point P),

2 ’

—Ol=




' Table 2 Summary of numerical simulations
I
Case Region B 8 Figure
a I 11.0 2.25 l12a
v* 11 11.0 1.50 b
c III 12.0 1.50 c
a¥ v 14.0 3.00 a
e \' 12.0 2.25 e
£ vI 12.0 1.95 f
g VII 12.3 1.80 g
h VIiIIa 18.0 0.75 h
i* VIIIb 15.5 1.75 i
3j IX 12.6 1.50 3j
k Xa 15.5 3.00 k
1 Xb 13.3 2.25 1
m XI 14.0 1.50 m
n XII 12.6 2.25 n
o XIIIa 13.3 1.95 o
p XIIIb 12.4 1.75 p
g XIIlc 13.0 2.25 q
r X1iv 17.8 4.00 r

*
Steady profiles calculated for fixed Da, cf. Figure 13.
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Figure 13 Steady state profiles; ——

(1) case
{(ii) case
(iii) case
(iv) case
(v) case
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w0

Table
Table
Table
Table
Table

(Region
(Regian
(Region
{Rrgion
(Region

stable,

I1}; Da
IV): Da
X111Ib);
XIT11b);
VIIIh);

--~ uynstable

= 0.136
= 0.185
Da = 0.144
ta = 0.158
Da = 0.070



three steady states are possible for (B,8) in the region below
M1 and above M2' Thus the turning points are: m3 and My
and the multiplicity occurs at higher conversions than i1s the
case for jparameters to the left of P. Furthermore, the
multiplicity now occurs to the right of the maximum in the x2
curve (compare Figures 12b and 43). As illustrated by

Figure 13(ii) the steady state temperature profile now has

a maximum 1nside the reactor because of the increased heat

transfer (8). This maximum moves forward and becomes nore

ronounced as the reaction ignites. A second set of turnin
g g

1

points, m and my appears when (B,B) rises above Ml

and then the multiplicity pattern is again either 1-3-1-3-1
(cf. Figure 12q) or 1-3-5-3-1 (cf. Figqure 12k). In the very
special cases where Da(ml) = Da(ma) or Da(mz) = Da(mq) the
patterns become 1-3-5-1 or 1-5-3-1, respectively.
Clearly, if (B,B) pass through the point, F, mi.om,, Mo,
and m4 appear simultaneously so that one goes from a region
with a unigue steady state (cf. Fiqure 12a) to a region where
three steady states exist over two disjoint intervals of
Damkohler numbers (cf. Figure 12n). Figures 13iii and 13iv
give respectively, examples of steady state profiles for cases
with 1-3-1-3-1 and 1-3-5-3-1 multiplicity. As expected, these
profiles combine the characteristics of the ones in Figures
13¢i) and 13(ii).

The Hopf-bifurcation structure is conveniently demonstrated
by considering the different phenomena that comes about as

either B c¢r B8 is varied. First let us vary B  kecping

B = 1.5. In region I we have a unique alobally stable steady

state profile. As discussed above, two turning points exist

Ry e IRy




i
w 10 regron II (cf. Figure 12b). If B is increased past Che
2 S; curve 1nto region ITI a Hopf bifurcation point, sy
'
S1ides onto the upper branch (cf. Figure 12c). Above MZ'
| in region IX, the turning points, Mo mq, agppcar to the é
right of the Hopf point and therefore do not interfere with ;
1t (of. Figare 123}). At the S1 cur e a second Hor f point,
5 matertalizes on the middle branch (region XI, cf. Figure
Liw): thin time it comes in from m3.
Since region XI extends to the upper boundary of the
parameter space plot, we now hold B  constant at some value 4
atiwe the lntersection of S; and S4, say 15.5, and change 8.
A B ts increased the Hopf points s and 52 approach each
other and at 54 they coalesce and disappear. This means that
in region VIIIb the middle branch is unstable contrary to the
cave in region VIIIa (compare Figures 12h and 12i). Further
“reases i1n B  bring us past S; where a new Hopf bifurcation
peint comes onto the upper branch from m4 (cf. Figure 12k).
“n, 8 passes into region XIV through S1 where a Hopf
Lifurcation point moves past ml down onto the lower branch
o8 Tigure 12r). Note that region XIV is extremely small for
P Finally increasing B leads one to region IV through
Hl, whern m, and m, coalesce and disappear. Figure 124
carmplifles the structure.
taxt let us fix B at some value below the intersection of
?t ant 54 but above M2 and vary B again starting in ;
cetinn XI. Now S; is reached before S4 so we enter region i
A1l where the Hopf point, S5+ appears on the upper branch
T and s still exist on the middle branch (cf.




Figures 120-gq). A further increase in § brings us 1nto

either region X b -rossing 54 (cf. Figure 12k,1l) or region
XI1 by crossing Sl (cf. rigure 12n) depending on the value

of B. In the first case, S; is encountered and sl and s,
coalesce while in the second case S, moves past m2 at curve
Sl' From region X, increasing B leads us across S1 into

reqiton XIV and across Ml to region IV as before, while from

rec n XII we enter region IV directly. If M2 is passed,

the multirlicity vanishes and region V appears (cf. Figure 1l2e).

Below the M2 curve the 52 curve forms the border between

regrons III and VI where a second Hopf point s appears on the

2

uprer branch {(cf. Figure 12f). If B 1is increased in region VI,

ei1ther Sl or M1 is crossed. In the first case (region VII)

a third Hopf point slides onto the upper branch from m2 (cf.

Figure 12g), while in the latter case (region XII) a
multiplicity is formed between the two Hopf points (cf. Figure
12n). Increasing B in either region leads to region XIII.

Let us discuss the intersections between the M and S

curves. Because the curves s1 and S3 respectively

represent parameter combinations where Hopf bifurcation points

appear from under the turning points m and m the curves

3 4’

have to come together at the point O where S1 crosses MZ'

Also 52 has to join at this point in order to preserve the

balance of Hopf points. Similarly 52 and 53 have to

coincide where S2 intersects Ml since they represent

points which come onto the upper branch through the turning

point m_. Note that S and M "kiss" and depart again as

1 1

-
<

in the case of the CSTR.

T

gt




A rigorous analysis of the directicn and stability of the
branching periodic solutions has yet to be made 1n order to
obtain the complete phase plane structures of ecach reagion.

In addition to the nine basic phase portraits given by U::al
et al. ({66]), Figure 6) one c¢learly would ohtain new phase
plots in the regions where five steady profiles and/or three
Hopf bifurcations exist. However, the structure of these w. .1

not be entirely new, but rather combinations of characteristics

of the basic plots. For example, the phass portraits of

[e%

region XIII will be a combination of those for regions ITII anc
IV. Similarly, the plots for regions IX and X are likely to Lre
a mixture for regions II and III. Because a unigue unstakle
state is surrounded by a stable limit cycle, one knows without
further analysis that stable limit cycles exist in regions
IV-VII and XII-XIV. The original simulations by Varma and
Amundson [45b, Figures 2.3 and 2.4) nicely illustrate with
phase portraits and reactor profiles some of the possitle

limit cycle behavior in these regions.

Effect of Varying Peclet Number

As already demonstrated above, the most dramatic influence
of the Peclet number on multiplicity and oscillatory phenomena
is the introduction of an additional set of Hopf and static
bifurcation points to augment those found for the CSTR.
However. it is also rather interesting to ccnsider the effect
of the Peclet number on the critical values of B and B.

Let us hegin with the multiplicity limits and compare these
exact limits with those predicted by Hlavafek's “linearization®
{38) and the one point collocation method. Both these early
lumping techniques give the following algebraic steady state

equations:

—Ou=-
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while 110 t:io e ULt et
R
9 = ] o= 1,2 (.7
1 241 4t !
when lLeguendre 1o LOTdals are sood a crial funcuion T
collocation joirnt 1u then z = 1/2.
8y solving four va and fiading the parace ter sets forowiiloon
Y ; ; i
dDa
ix = 2 is prssirle, one derives the necescsary condition @or
x
1
multi;licicy
2
4lu +i+Fx s
B > ——— == S — (03

Because both 9 + 1 s Pe, =+ O, his condition (63)

ot

approaches the usual one for the CSTR [66, 1nequality (12)]

in the limit of small Peclet nurbers, as it should. However,

for large Peclet numbers, the criteri>n (68) takes different

forms because as Peclet number becomes large, ui -+ Pel, :hile for

P . . . p—y i
Hlavacek's approximation 4y 4/3 for the one point

collocation auproximation.

Figure 14 gives a comparison of the exact multiplicity
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reas sl of Ml lires wilith increasing
r Although it has not been formally p ,
272l calculations infer that the Ml *urves are also
inrs for Te > 0. whereas Hlavalek's approximation
the adiabatic CSTR condition asymptotically, the
solloeanion prediction stays close to the exact limit.,
r twe 730, it is above the exact limit and thus
1 I re there are multiple steady states.
I]Ui{(k'g arproximatisn gives conservative
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Figure 15 The lower limit for Hcpf bifurcation at different
values of the Peclet number.




as drvd Ray and Hasting- [67), to Jetormine the ocritioal wal
af the Lewls numbeoer, ch, above whioh oscyllatrons d 1ot
scour. Because of the analoay to the CSTE Case, Ofie e Xioots
cscillatians to exist for all 0 < Le < Lec, ant 11 face,
extensive numerical calculations support this conjecture.

The bBifurcation analysis may be carried throuah with

respecst to Le just as was done in the previous sections with
respect to Da. In the CSTR case the model parameters can Lo
redefined such that the parameter space plots for Le = 1 can

be used 2irectly for all values of Le [67]). Unfortunately,
in the tubular reactor case, a similar redefinition of the
yarameters cannot be made because of the convection terms in
the modelling equations.

Wwhen N = 1 in the collocation or Galerkin approximation,

it is possible to derive an expression for the Lewis nunber

from the Hopf condition, Egn. (62a):
S; = tr(J) = tr(M = (69)
1 (-) f(_(l + !Sll) 0

By inscrting the expressions for M and (25,26) and

My LS8

—
)
o

,31) and rearranging, we obtain (for the Galerkin procedure)

“he expression

(70)

.= e . .
.o S
dutt ‘i e & aamti 4 &




while for the collocation procedure we have
I
* .
¥, Pk
o, Pe 211 = 8
2
x_(z))
Le =- s i
c of B* (71)
1 + 111 A
x Pel 111
xs(zi)

where both formulae are subject to the constraint Det(g) > 0.
when N = 2, the Hopf condition (63a) may be rearranged

to a fourth order gpolynomial in LeC by using the fact that

the Lewis number divides all elements in the even numbered

recws of the Jacobian Egquation (17) [37]. However, when N > 2,

the Hopf bifurcation condition becomes too complex to be

expressed in terms of Lec, and Lec is then determined

iteratively Lty calculating the eigenvalues of the Jacobian.

In the fcllowing paragraphs we give examples of the changes
in the bifurcation structure as Le =+ 0. Figures 16, 17, and
18 show the wvariation in the critical Lewis number with the
Damkshler number in three different cases of steady state
pehavior, and Table 3 summarizes the corresponding bifurcation
regions. In these calculations N = 6 terms were used to

insure accura*te values.

In the first case (Figure 16}, the tubular reactor egquations

' have a unique solution for all values of Da. This is globally
*
stable when Le > Lec where
*
Le_ = max Le . (72)
< c
Da>9d

e e o

. . v T
e ittt cosonilidt . wibth ! .j




Table 3 Types of bifurcation behavior

Pe as Le =+ 0

for different

(B = 15, Pe, = Pe,, Xy T 0, 8 10)
Fioure = Fe Le _ Reciogii
16 3 Le>1.39 I
1.267<Le<1.39 v
1.262<Le<1.267 XV
0 <Le<1.262 \'4
1.27 <Le<l.31 ITI
17 4 1.26 <Le<l1.27 IV
1.22 <Le<l.26 XVI**
o] <Le<1.22 IV
Le>1.28 VIiIiIa
1.27 <Le<l.28 X1
1.25 <Le<1.27 IX
18 5 1.22 <Le<1.25 XI
1.20 <Le<l.22 XI11I
0.844<Le<l.20 X
0 <Le<0.844 XTVr*x*
+ cf. Figures 10 and 12
. New region, cf. Figure 19b

** New region, cf. Figure 19c¢

L cf. Figure 19a
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Figqure 16 AThe critical Lewis number, Lec, and the steady state
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At Le = 1.39 a set of Hopf bifurcation points, s and
c

i 3

. 54, appears and these move apart as lLe decrevases. This
behavior corresjponds to region V. Since Lcc has a second

! local maximum, Lcc = 1.267 at Xy oF .72, a second set of
Hopf points S, and s, wemerges when ch = 1.267. Thus,
there are two intervals of Da numbers wher. stable oscillatiorng
€exi1st. This structure, which was not found above, is

classified as rezion XV and 1s illustrated by Figure 19b.

When Le = 1.262 the Hopf points, S and s coalecce

2 3’
and disappear. Thus, we are back in region V.

In the second case (Figure 17), three steady state profiles

*
exist for 0.160 < Da < 3.168. As Le decreases beneath Lcc

i\

Hovf point appears on the upper branch and we have a region

ITI behavior. At Le = 1.27 a Hopf point comes onto the
lower brancn at the turring point and we are then in region 1IV.
Because Lec versus Da has a loncal maximum, Lec = 1.26 at
x, = 3.71 and 4 local minimum, LeC = 1.22 at xl = 0.81,
a second set of Hopf points emerge on the lower branch when
1.22 £ Le S 1.26. Thus, there are now three bifurcation
points on the lower branch plus one on the upper branct. This
structure is new and is classified as region XVI. It is
iltustrated hy ¥Figqure 19c. For LeC < 1.22 the set of points
disapprar ajain and we are back in region 1IV.

In the third case (Figure 18), we have multiplicity of the

*

kind 1-3-5-3-1. Since Lec is located on the middle branch,

*
we pass from region VIIT to XI as Le decrcases beneath Le

At Le = 1.27 the Hopf ;oint "falls off” the second turning

¢nint ard then we have region IX behavior. At Le = 1.25 a new
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Fiqure 19 The steady state exit conversion, X, 4 temperature,
Xy for varying Da: B = 15, X5, o, - 3, Yy = 20.

(a) Example of region XIV beha.. r: Le = 0.800,
Pc1 = Pez =5

(b) Example of region XV behavior: Le = 1.263,
Pe, = Pe, = 3
{c) Example of region XVI behavior; Le = 1,240,
Pe1 = Pc2 = 4
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bifurcation point emerqges from behind the third turning § oot

and we o are back in oregion XI. When  Le = 1,022 g Hopt oot

appears on the upper branch giving us region XITla bhenavier

At Le = 1.20 the Hopf points on the middle of the brinch

coalesce and we have a region Xa structure until] L s Dmdd

where o paint emerages on the lower bhranch {(region XIV) T

is 1llustrated by Figure 19a, which Indicatoes the oxistrrno .o H ﬁ
a stable limit cycle surrounding five unstable stealdy stat »
for a small ranyr of Da just to the right of the lower Hoyp f

bifurcation point.

it is possible to answer the guestion of existence of
limit cycles in fixed bed reactors, by considering the var:at: o
. * . . - .
in Loc with Pe as illustrated in Figure 20. Here also the

influence of the number of terms in the Galerkin ¢

*
shown. The discontinuities in the curves occur when porsy

»hifts among branches in the region of multiplicity as 1is

o
illustrated by Figqures 16, 17 and 18. Note that Lec becom. &

less than unity for Pe > 14, which implies that, even for
"empty" tubular reactors (Le = 1), oscillations are only
possible in very short reactors (as was shown in the previous
section). Thnoerefore, oscillations due to interaction of mixing
1nd reaction terms should not occur in industrial fixed bed
: 22t “rs where Le ~ S00 are common.
A CONCLUDING REMARKS
I:. 1% pager we have agiven a detailed aralysis of the
irrece of malrirle steady states and oscillatory behavior
. tulnlar reactors ausing the pseudohomogeneous axial
Jisper oion madel a9 an example. This model was a convenient

choice since the modelling ejuations formed a relatively simrle
- -

o - - P p— T

e e e duition ML S
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*
Figure 20 The critical lewis number, Lec, as a function of the

bPeclet number, FPe
in the Galerkin exvansion.
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set of nonlinear coupled parcbolis nartial differential
cgquatyons., Moreover, previously published exanples of

multiple steady states and limit cycles for this model mooae

1t possitle to check the

were given to the golution of stiff stealy ctate equations
and, amonyg different approximation procodures, orthogonad
spline collocation was found tao give the bo-ot accuracy.

Comparisons of various ways of calculating bifurcation to

ultiple steady states showed direct turning point calculations
to be most convenient. The eigenvalues of the linearized
overator werg determined by both a collocation and Galerkirn

ormer converqged in a damrpened oscillatory

T
~
o]
19
o4
[o5
o
a}
o
va
oy
-n

manner, while the latter appeared to converge faster an3

monotonically.

The bifurcation algorithms were sensitive to the accuracy

of the steady state calculations so even for moderate Peclet

0

numbors (Pe - 5) it was necessary to use spline interval
with 6~10 collocation points in cach interval, Although
orthogonal spline collocation was very officient in the

steady state calculation this meant that 10-60 minutes =f

CPU were requirad on a PDP 11/55 minicomputer in order to trace
out the hifurcation behavior for all valucs of Da > 2 when
all other parametors were fixed. The actual length of rhe-
computations depended on the narrowness of the search interval
and the values of B and Pe. To fully describe the tyroes of
dynanic tehavior possible, one still has to determine the
stabilicy and direction of the hranching of veriodic solutions.

This can «asily boe done within the frarmeworx of the present

e ia st i et A2




Ayl e starndard LLh formalar

T, 0B o the GalerRin ajjroxisation or Ly using the
formulae of Helnemana and loore [0
analysys wans focuau

Although in the present study «

a tubular rvactar, the alaocrithms Jeveloped here should he

useful in determining *

other systems Jdoscrited Ly PDE'S. Coneidering the
variety of »ifurcatisn suructures in the relatively simpl

axial dispersion tubular reactor model,

the intricate and challenging structures

complex models.
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cocfficient 1n Galerkin expansion, defined
collocation weight, see Egq. (27)

dimensionless adiabatic temperatucse rise,
23. {(6)

llucation weight, see Eg. (28)
poundary operator, defined in Eg. (11)
Joncentration
feed concentration
heat capacity of fluid phase
hreat capacity cof solid phase
capracitance matrix, defined in Eg. (8}
diameter 0of reactcr
samkdhler number, defined in Eq. (6)
longitudinal dispersion coefficient
activation enerqy
norniinear multivariable function, defined
lincar operator, defined in Eg. (16)
nthalpy of reacticn
jacubian, defined in Ea. (17)

ro-exponential factor

b

sngitudinal thermal conductioan
> x 2 matrix,defined in Egs. (26) and (31)
reacter length

 of spline points

"

. operator,defined in Egq. (9)
corkined c¢ollocation weight, see Eg. (43)

,defined in Egq. (6)

%
-
n
3
o
=1
r

L»wis number

~75-

T T e —————

o

in Eq.

defined

(13

in
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M number of anterior cowllocation points in steady state

solution

M 2 x J o matrix,defaned wn o tgs. {25) and (39)

N nupher of terms in collocation or Galerkin approximation

vector of parameter values

2

P (1) characteristic polynomial, Eq. (58)
Pe1 Feolet nunter for mass dispersion, defined in Eq. (8)
Poz Peclet number for heat dispersion, defined in Eq. (6)
R universal gas constant
s, i'th Hopf bifurcation point
Si sum cf 1'th principal minor of Jacobian
'
t time
t dimensionless time, defined in Eg. (6)
T temperature
Tw wall temperature
TO feed temperature
Uw heat transfer coefficient
v, lincar gas velocity
5 state vector
%) conversion,defined in Eq. {6)
X, dimensionless temperature, defined in Eq. (6)
X, value of X, at the spline point, zs, see Eq. (36)
Xy dimensionless wall temperature
b4 state vector
b L}
z longitudinal coordinate
z dimensionless longitudinal coordinate, defined in Eq.
zi 1'th spline point

spline point serarating the reaction zone from the
"dead" zone, see Eq. (36)

(6)

e




Svmbols

coefficients, defined in Eq. (38)

dimensionless heat transfer coecfficient, defined 1n By, i B

dimensionless activation evrerqgy, defined in kEg. (6) :
Kronecker's delta a
bed porosity ;

dimensionless longitudinal coordinate
n'th eigenvalue, given in Eq. (23)
coefficionts, see Egs. (66) and (67)

density f£luid phase

i

density solid phase
n'th eigenfunction, see Eq. (22)

fregquency of the bkifurcating orhkit
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betiavicor «t the 1nterpolating volyaormial (o Cnyoare X
to the exact nolutioen (L), Arpl oXinate Tutaioon
based on orthogonal cellocation, n [N Keactor
ki
pdrametoers: Bo= 1J.3, Da 0.13, Icl = ke - 1. ., o
B s 0.0, Y = 2., “
Sttt o rartareation curve s based on o stea iy Tt R
soluen o Srtho orthoagonal collecatooan (A) g Pl e é
collovation (M = 10) (B)}; B 16,9, = > P I3
"'0
Example of a steady state jrofile for which three ;
spline points (e) are necessary. 8 = 16.8, Da = L.337,
Pe. = 320, fe. = 100, x vo-9.6, R o= .72, Y = iv.9
1 2 2w 1
An example of steep converslon and temperature i
profiles found by spline collocation. (a) Usp
strady state, (b) lower steudy state. B = l6.8,
Ca = .32, Pre = 320, Pe = 120, x. = .6, ;
o 35 1 2 2w i
8 = 9.72, Y = 16.9. 3
Igynition and extinction behavior of outlet convers:ion
and temperature for Libeck's example [89) i,
Pe, = 100, B = 0.72, B = 8.7-10°7.%, va =
v o= 1.22 10Tl x = y(310-T)T7', T, fesd temporatur.
. . £ 2w £ £
in K.
steady state value of x.,(z) for varying Ca. The curwve
nas twn turning points, ml and m, .
Trhe predicted bifurcation points, Da,, for varicus
assumed values, Da_ , and varying number of terms, N,
in the Galerkin expansion.
. . *
The critical Lewis number, Lec, for varying number ¢
terms, N, in the collocation procedure (x) and in
Galexrkin'y method (o).
Cl ration of the dynamic behavior of the CSTHR
in the parameter space B-F [66].
Classification of the dynamic behavior of the axi:zl
dispersion model (Pe = 5) in the parameter stiace H-3
In the peripheral figures: stable state, ---- un-
stable state, e Hopf bifurcation points.
Classification of the dynamic behavior of the axial
digiersinon model (Pe = 5) in the parameter space RE-7
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Lofor param ' |
I Ferorare 1 Steads crtate prertiler; - -0 o stable, --- unstable

(1Y cace b Tarle v (kKecion ID); Da = 0.136 ;i
Cii, e tolarle 5 gkheanran IV a2 O0L1EBS ]
.

R oo Tar e w {Eeqron MTITHLY; Da = GL144
[ K H oo o {beadjon N1ITRL) G = 2.1%% |
daser 1 Table 5 fkReaion VITIE) = CL073 i

Froausre D4 Somarasen of wexmact and approximate limits of

N The lower limin for Hopf bifurcaticn at different
values of the Peclet nunber.

numbeor, Lec, a3 the steady state
L for varying Damkohler number,
Ba. B o= 15, Pey =TPe, =3, x, =0, B =3, v = 20. E

Figure 17 The critical Lewis number, Le , and the stecady state
c .
exit Conversion, x , for varyving Damkoh.ler number, Da.

0oL v T, N = 4, . £ , = R = 273,
Q 1y, Fuy Fo, 3 XZW 0 8 3 Y V]

—

Ficure 1z The vritical Lewis number, Le , and the steady state
¢

exit corversion, x,, for varyinag Camkohler number,
F
Da. B =~ 1%, Peo= Po, = 5, Xow = 0, 2 = 3, Yy = 20.
Figure 19 The “ealilyv state exit conversion, Xy and temperature,
x_, for varvii va: B = 1%, x = 0, 2 =3, v = 20.
2 2w
(a} Example of reacion XIV behavior; Le = 0.800,
Fr, = Po_ = 3
i 2
(L) Example of realoan XV behavior; Le = 1.263,
ve = Pl - 3
{c) Fxam: le 5f rogion XVI hehavior; Le = 1.240,
.
Boo= Ee 3
1 J
*
' Figura 2 critical Lewis number, Le , as a function of the
Peclet nusior, bte for d1€ferent number of terms, N,
l in the Jalersxin wxpansion
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Methods for studying the bifurcation behavior of tubular reactors ave
Leen developed. This involves the application of static and iopf bifurca
theory for POE's and the very precise determination of steady state
profiles.  Practical computational methods for carrying out this analys:. e i
l1srussed 1n =some detall.  For the specilal case of a tivst order, trvever: 1oL i
t
|
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reaction 1n a4 tubmlar reactor with axial dispersion, the bhifurcataion bebhgvion
s clansified and summarized In parameter space plots.  In particuiar b
influence of the Toewls and Peclet numbers is investigated., 1t 1s shewn oo
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rltioe s due to o interaction of dispersion and reaction effects should not
Storn taxed el reactors and moreover, should only occur in very short
. ot batbar peactors, The parameter study not only brings together
U roned examples of multiple and periodic solutions but also
trerte umidiscovered wealth of bifurcation structures. Sixteen of

s orares, which come about by combinations of as many as four
to onltirle steady states and four bifurcations to pericdic
f o5, 1o rllustrated with numerical examples. Although the analysis is
v s euadohoemogencous axial dispersion model, it can readily he
it ot cuner reaction diffusion equations such as the general two phase
' &
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